Spectral optimization for singular Schrödinger operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

Schrödinger Operators with Fairly Arbitrary Spectral Features

It is shown, using methods of inverse-spectral theory, that there exist Schrödinger operators on the line with fairly general spectral features. Thus, for instance, it follows from the main theorem, that if 0 < α < 1 is arbitrary, and if Σ is any perfect subset of (−∞, 0] with Hausdorff dimension α, then there exist potentials q j , j = 1, 2 such that the associated Schrödinger operators H j ar...

متن کامل

On Spectral Theory for Schrödinger Operators with Strongly Singular Potentials

We examine two kinds of spectral theoretic situations: First, we recall the case of self-adjoint half-line Schrödinger operators on [a,∞), a ∈ R, with a regular finite end point a and the case of Schrödinger operators on the real line with locally integrable potentials, which naturally lead to Herglotz functions and 2× 2 matrix-valued Herglotz functions representing the associated Weyl–Titchmar...

متن کامل

Periodic Schrödinger Operators with Local Defects and Spectral Pollution

This article deals with the numerical calculation of eigenvalues of perturbed periodic Schrödinger operators located in spectral gaps. Such operators are encountered in the modeling of the electronic structure of crystals with local defects, and of photonic crystals. The usual finite element Galerkin approximation is known to give rise to spectral pollution. In this article, we give a precise d...

متن کامل

Spectral Properties of a Class of Singular Differential Operators

We consider the operator A0f = (−1)n 1 v(t) ( Dρ )∗ [ u(t)Dρ ( f (t) v(t) )] , where Dρ f (t) = dk dtk [ ρ(t) dmf (t) dtm ] , ( Dρ )∗ f (t) = dm dtm [ ρ(t) dkf (t) dtk ] , k + m = n. Our main aim is to prove some spectral properties of a natural extension of this operator. In order to prove this we need to prove some properties of a function space, connected to the operator Dρ , and some embedd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2020

ISSN: 1846-3886

DOI: 10.7153/oam-2020-14-44